17,701 research outputs found

    Improved quark mass density- dependent model with quark and non-linear scalar field coupling

    Full text link
    The improved quark mass density- dependent model which includes the coupling between the quarks and a non-linear scalar field is presented. Numerical analysis of solutions of the model is performed over a wide range of parameters. The wave functions of ground state and the lowest one-particle excited states with even and odd parity are given. The root-mean squared radius, the magnetic moment and the ratio between the axial-vector and the vector beta-decay coupling constants of the nucleon are calculated. We found that the present model is successful to describe the properties of nucleon.Comment: 7pages, 6 figure

    Periodic Bounce for Nucleation Rate at Finite Temperature in Minisuperspace Models

    Get PDF
    The periodic bounce configurations responsible for quantum tunneling are obtained explicitly and are extended to the finite energy case for minisuperspace models of the Universe. As a common feature of the tunneling models at finite energy considered here we observe that the period of the bounce increases with energy monotonically. The periodic bounces do not have bifurcations and make no contribution to the nucleation rate except the one with zero energy. The sharp first order phase transition from quantum tunneling to thermal activation is verified with the general criterions.Comment: 17 pages, 5 postscript figures include

    Glueball Matrix Elements on Anisotropic Lattices

    Full text link
    The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing in the range 0.1fm -- 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/ψJ/\psi radiative decays which will help to identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check, and the finite volume effects are also studied. The lattice spacing dependence of our results is very small and the continuum limits are reliably extrapolated.Comment: 3 pages, 3 figures, Lattice2003 (spectrum

    A condition for first order phase transitions in quantum mechanical tunneling models

    Get PDF
    A criterion is derived for the determination of parameter domains of first order phase transitions in quantum mechanical tunneling models. The criterion is tested by application to various models, in particular to some which have been used recently to explore spin tunneling in macroscopic particles. In each case agreement is found with previously heuristically determined domains.Comment: 13 pages, 5 figure

    Quantum-Classical Phase Transition of Escape rate in Biaxial Spin Particles

    Full text link
    The escape rates of the biaxial single domain spin particles with and without an applied magnetic field are investigated. Using the strict potential field description of spin systems developed by Ulyanov and Zaslavskii we obtain new effective Hamiltonians which are considered to be in exact spin-coordinate correspondence unlike the well studied effective Hamiltonians with the approximate correspondence. The sharp first-order transition is found in both cases. The phase diagram of the transitions depending on the anisotropy constant and the external field is also given.Comment: 15 pages, 8 figure

    Massless Dirac Fermions, Gauge Fields, and Underdoped Cuprates

    Full text link
    We study 2+1 dimensional massless Dirac fermions and bosons coupled to a U(1) gauge field as a model for underdoped cuprates. We find that the uniform susceptibility and the specific heat coefficient are logarithmically enhanced (compared to linear-in-T behavior) due to the fluctuation of transverse gauge field which is the only massless mode at finite boson density. We analyze existing data, and find good agreement in the spin gap phase. Within our picture, the drop of the susceptibility below the superconducting T_c arises from the suppression of gauge fluctuations.Comment: 4 pages, REVTEX, 1 eps figur

    Systematic Study on Fluorine-doping Dependence of Superconducting and Normal State Properties in LaFePO1-xFx

    Full text link
    We have investigated the fluorine-doping dependence of lattice constants, transports and specific heat for polycrystalline LaFePO1-xFx. F doping slightly and monotonically decreases the in-plane lattice parameter. In the normal state, electrical resistivity at low temperature is proportional to the square of temperature and the electronic specific heat coefficient has large value, indicating the existence of moderate electron-electron correlation in this system. Hall coefficient has large magnitude, and shows large temperature dependence, indicating the low carrier density and multiple carriers in this system. Temperature dependence of the upper critical field suggests that the system is a two gap superconductor. The F-doping dependence of these properties in this system are very weak, while in the FeAs system (LaFeAsO), the F doping induces the large changes in electronic properties. This difference is probably due to the different F-doping dependence of the lattice in these two systems. It has been revealed that a pure effect of electron doping on electronic properties is very weak in this Fe pnictide compound.Comment: 8 pages, 5 figures, accepted for publication in J. Phys. Soc. Jp
    • …
    corecore